Search Results

Documents authored by Dai, Junyan


Document
Leveraging Constraints Plus Dynamic Programming for the Large Dollo Parsimony Problem

Authors: Junyan Dai, Tobias Rubel, Yunheng Han, and Erin K. Molloy

Published in: LIPIcs, Volume 273, 23rd International Workshop on Algorithms in Bioinformatics (WABI 2023)


Abstract
The last decade of phylogenetics has seen the development of many methods that leverage constraints plus dynamic programming. The goal of this algorithmic technique is to produce a phylogeny that is optimal with respect to some objective function and that lies within a constrained version of tree space. The popular species tree estimation method ASTRAL, for example, returns a tree that (1) maximizes the quartet score computed with respect to the input gene trees and that (2) draws its branches (bipartitions) from the input constraint set. This technique has yet to be used for classic parsimony problems where the input are binary characters, sometimes with missing values. Here, we introduce the clade-constrained character parsimony problem and present an algorithm that solves this problem in polynomial time for the Dollo criterion score. Dollo parsimony, which requires traits/mutations to be gained at most once but allows them to be lost any number of times, is widely used for tumor phylogenetics as well as species phylogenetics, for example analyses of low-homoplasy retroelement insertions across the vertebrate tree of life. Thus, we implement our algorithm in a software package, called Dollo-CDP, and evaluate its utility in the context of species phylogenetics using both simulated and real data sets. Our results show that Dollo-CDP can improve upon heuristic search from a single starting tree, often recovering a better scoring tree. Moreover, Dollo-CDP scales to data sets with much larger numbers of taxa than branch-and-bound while still having an optimality guarantee, albeit a more restricted one. Lastly, we show that our algorithm for Dollo parsimony can easily be adapted to Camin-Sokal parsimony but not Fitch parsimony.

Cite as

Junyan Dai, Tobias Rubel, Yunheng Han, and Erin K. Molloy. Leveraging Constraints Plus Dynamic Programming for the Large Dollo Parsimony Problem. In 23rd International Workshop on Algorithms in Bioinformatics (WABI 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 273, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dai_et_al:LIPIcs.WABI.2023.5,
  author =	{Dai, Junyan and Rubel, Tobias and Han, Yunheng and Molloy, Erin K.},
  title =	{{Leveraging Constraints Plus Dynamic Programming for the Large Dollo Parsimony Problem}},
  booktitle =	{23rd International Workshop on Algorithms in Bioinformatics (WABI 2023)},
  pages =	{5:1--5:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-294-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{273},
  editor =	{Belazzougui, Djamal and Ouangraoua, A\"{i}da},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2023.5},
  URN =		{urn:nbn:de:0030-drops-186312},
  doi =		{10.4230/LIPIcs.WABI.2023.5},
  annote =	{Keywords: phylogenetics, parsimony, Dollo, Camin-Sokal, dynamic programming, constraints}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail